#include <assert.h>
#include <stdio.h>
#include <vector>
#include "signalUtil.h"
#include "spectrum.h"
#include "haar.h"
#include "daub.h"
#include "line.h"
#include "poly.h"
Go to the source code of this file.
Functions | |
| void | genSawTooth (double *vec, size_t N) |
| int | main () |
| \function. More... | |
By calculating the energy of each wavelet coefficient band a spectral plot, similar to a Fourier spectral plot can be generated. The code in this file tests this for stationary combinations of sin waves.
The documentation in this file is formatted for doxygen (see www.doxygen.org).
You may use this source code without limitation and without fee as long as you include: This software was written and is copyrighted by Ian Kaplan, Bear Products International, www.bearcave.com, 2002.
This software is provided "as is", without any warranty or claim as to its usefulness. Anyone who uses this source code uses it at their own risk. Nor is any support provided by Ian Kaplan and Bear Products International.
Please send any bug fixes or suggested source changes to:
iank@bearcave.com
Definition in file wavefreq.cpp.
|
|
Definition at line 58 of file wavefreq.cpp. 00059 {
00060 double *A = new double[N];
00061 double *B = new double[N];
00062
00063 signalUtil::sawToothWave( A, N, 8, 1.5 );
00064 signalUtil::sawToothWave( B, N, 32, 0.25 );
00065 signalUtil::addSignal( vec, A, B, N );
00066 delete [] A;
00067 delete [] B;
00068 }
|
|
|
\function. The entry point for code to test the wavelet packet transform. The code in main provides a simple example of how to call the wavelet packet transform code. This test case can be used with various wavelet functions (e.g., Haar, linear interpolation, Daubechies D4, polynomial interpolation). In the context of filters, the polynomial interpolation wavelets (see poly.h and polyHaar.h) are very bad choices. The polynomial interpolation wavelets do not divide the spectrum into high and low frequency components. Instead, the power spectrum shows one peak. I'm not sure if this means that the polynomial interpolation wavelets are bad for all applications. For example, another way to look at wavelets is as approximation functions. For example, wavelet compression relies approximation functions. In this case polynomial wavelets may be a good choice for some data sets. Definition at line 94 of file wavefreq.cpp. 00095 {
00096 const size_t N = 1024;
00097 // const size_t N = sizeof( data ) / sizeof( double );
00098 double vecX[N], vecY[N];
00099
00100 // signalUtil::gen_freqMix( vecX, vecY, N );
00101 signalUtil::gen_sinCombo( vecX, vecY, N );
00102
00103 // genSawTooth( vecY, N );
00104 // signalUtil::prVec( vecY, N );
00105
00106 // signalUtil::prVec( vecY, N );
00107 // signalUtil::prCoords( vecX, vecY, N );
00108
00109 // The "Haar" transform
00110 // haar<double * > w;
00111
00112 // Daubechies D4 wavelet
00113 // Daubechies<double * > w;
00114
00115 // linear interpolation wavelet
00116 // line<double *> w;
00117
00118 //
00119 // Polynomial interpolation wavelet (not recommended)
00120 //
00121 poly<double *> w;
00122
00123 double *ptr = vecY;
00124 w.forwardTrans( ptr, N );
00125
00126 std::vector<double> powerVec;
00127 spectrum::spectralCalc( vecY, N, powerVec );
00128
00129 //
00130 // Print out the power spectrum
00131 //
00132 size_t len = powerVec.size();
00133 for (size_t i = 0; i < len; i++) {
00134 // printf("%2d, %7.4f\n", i, powerVec[i] );
00135 }
00136
00137 double d1[N], d2[N];
00138
00139 spectrum::copyBands( d1, vecY, N, 0, 6 );
00140 spectrum::copyBands( d2, vecY, N, 7, 10 );
00141
00142 ptr = d1;
00143 w.inverseTrans( ptr, N );
00144
00145 ptr = d2;
00146 w.inverseTrans( ptr, N );
00147
00148 //
00149 // Print out the lower half of the spectrum
00150 //
00151 // signalUtil::prCoords( vecX, d1, N );
00152 // signalUtil::prVec( d1, N );
00153
00154 //
00155 // Print out the upper half of the spectrum
00156 //
00157 signalUtil::prCoords( vecX, d2, N );
00158 // signalUtil::prVec( d2, N );
00159
00160 return 0;
00161 }
|
1.2.8.1 written by Dimitri van Heesch,
© 1997-2001